升华速率(冰的升华速率) 冰的绝对升华速率Gs,单位为 kg/(s·㎡)可用Knudsen方程来表示:

式中,α为蒸发系数;PS为冰升华界面温度T时的饱和蒸气压,kPa;M为水蒸气的摩尔质量,kg/kmol;R 为气体常数,kJ/(kmol/K);T为冰的热力学温度,K。
因 PS随冰升华界面温度 T增大而增大,所以升华界面温度越高,其升华量G也越大。在冷冻干燥产品时,若传给升华界面的热量等于从升华界面逸出的水蒸气升华时所需的热量时,则升华界面的温度和压力均达到平衡,升华正常进行。若供给的热量不足,水的升华夺走了制品自身的热量而使升华界面的温度降低,若逸出的水蒸气少于升华的水蒸气,多余的水蒸气聚集在升华界面使其压力增高,升华温度提高,最后将导致制品熔化。所以,冷冻干燥的升华速率一方面取决于提供给升华界面热量的多少;另一方面取决于从升华界面通过干燥层逸出水蒸气的快慢。
为了简化计算,将冻干的传热传质过程简化成,如图2.2所示的模型。通过冻层和已干燥层的传热量可用式(2-1)、式(2-2) 表示:



式中,A 为升华面积,㎡;λi,λd为冻层和干层的热导率,W/(m·K);TW,T′W为冻层底部和干层外表面的热力学温度,K;Ti、T′i为升华界面的热力学温度,K;Xi,Xd为冻层厚度和干层厚度,m。
升华出来的水蒸气通过已干燥层和箱内空间输送到水汽凝结器。其传输速率可用式(2-3)表示:

式中,A 为升华界面面积,m2;PS,Pn.为升华界面和水汽凝结器的压力,Pa ;Rd,Rd。为干燥层的阻力和干燥层表面到水汽凝结器之间的空间的阻力,Pa·m2·s/kg;k1为由升华物质的分子量所决定的常数,kg/(Pa·m2·s)。
由以上公式综合可见,要想提高升华速率,需注意以下几点。
a.冻层底部或干层表面的温度在允许的最高值以下尽可能高。
b.制品厚度越薄其热阻和流动阻力越小,热量和质量传输越快,升华速率越高。但每批制品的产量与厚度成正比,而每批加工的辅助工作量又大致相等,因而制品太薄会造成产品总成本提高。由厚到薄之间存在一个总成本低的最佳厚度。一般来说,生物制品的厚度为 10~15mm。
c.冻结层的热导率λi主要决定于制品的成分,已干燥层的热导率λd还决定于其压力和气体的成分,其变化关系见图 2.3。由图 2.3 可见,为了提高冻干层的热导率,箱内压力越高越好。但箱内压力越高,也可视为Ps越高,又会使水蒸气不易从升华面逸出,造成升华面温度过高,冻层熔化和干层崩解。为了两者兼顾,根据产品不同一般可将箱内压力控制在 13~130Pa。

d.水蒸气的排除还取决于Rd、Rs。由试验知,Rd比Rs。大6~10 倍。也就是说,穿过已干多孔层的水蒸气的流率大体上决定了干燥速率。而Rd主要与干层厚度和晶粒大小形状有关。一般来说,粗大而连续的网状冰晶,升华后也形成粗大而连续的网状间隙通道,水蒸气逸出时流动阻力较小,升华速率快。细小而不连续的冰晶结构则相反,不仅水蒸气逸出通道小,而且在这些不连续的空隙之间,水蒸气是靠渗透穿过已干的固体膜层的,很难干燥。